Improved parameter-estimation with combined PET-MRI kinetic modelling
نویسندگان
چکیده
Institute of Nuclear Medicine, University College London, London, UK Kinetic analysis can be applied both to dynamic PET and dynamic contrast enhanced (DCE) MRI data. We have investigated the potential of combined PET-MRI kinetic modelling using simulated FDG data. The volume of distribution, Ve, for the extravascular extra-cellular space (EES) can be estimated by DCE-MRI, and used to reduce the number of parameters in the PET model. We use a 3 tissue-compartment model with 5 rate constants (3TC/5k), in order to distinguish between EES and the intracellular space (EIS). In the standard models, k3 represents transfer from the unmetabolised to the metabolised (M) extravascular compartment. In our new model, k3’ represents transfer from EES to the EIS M-compartment. We also define the more biologically relevant constant, k3"=Vek3’, to be used together with the true EES tracerconcentration. Time-activity curves were generated using the 3TC/5k-model with 3 different Vevalues, but constant k3”. Noise was added and the data were fitted with the 2TC/3k model and with the constrained and-un-constrained 3TC/5k model. 100 noiserealisations were generated at 4 different noise-levels. For the standard 2TC/3kmodel, the estimated k3-values were in the range [0.053, 0.094] with SD in the range [0.002,0.043] /min. For the un-constrained 3TC/5k model, the k3"-values were in the range [0.041,0.187] and SD in [0.053,0.208] /min. With fixed Ve the range of k3” is reduced to [0.083,0.091] with SD in [0.002,0.017] /min. The true k3” value was 0.091/min. By incorporating information from DCE-MRI into the PET kinetic model, we obtained a good estimate of the parameter k3”, independent of Ve.
منابع مشابه
PET and MRI-guided focused ultrasound surgery for hypoxic-tissue ablation combined with radiotherapy in solid tumors
Background: The rationale was to develop an ablation approach to destroy regions of tumor resistant to radiation and thus reduce the time required for whole tumor ablation, while improving overall tumor control after radiotherapy. Materials and Methods: The system is composed of a micro positron emission tomography (mPET), 7T magnetic resonance imaging (MRI), and a customized MRI-compatible foc...
متن کاملComparison of DCE‐MRI kinetic parameters and FMISO‐PET uptake parameters in head and neck cancer patients
PURPOSE Tumor hypoxia is a major cause of radiation resistance, often present in various solid tumors. Dynamic [18 F]-fluoromisonidazole (FMISO) PET imaging is able to reliably assess tumor hypoxia. Comprehensive characterization of tumor microenvironment through FMISO-PET and dynamic contrast enhanced (DCE) MR multimodality imaging might be a valuable alternative to the dynamic FMISO-PET acqui...
متن کاملASL-incorporated Pharmacokinetic Modelling of PET Data With Reduced Acquisition Time: Application to Amyloid Imaging
Pharmacokinetic analysis of Positron Emission Tomography (PET) data typically requires at least one hour of image acquisition, which poses a great disadvantage in clinical practice. In this work, we propose a novel approach for pharmacokinetic modelling with significantly reduced PET acquisition time, by incorporating the blood flow information from simultaneously acquired arterial spin labelli...
متن کامل4D PET: Beyond conventional dynamic PET imaging
In this paper, we review novel techniques in the emerging field of spatiotemporal 4D PET imaging. We will discuss existing limitations in conventional dynamic PET imaging which involves independent reconstruction of dynamic PET datasets. Various approaches that seek to attempt some or all of these limitations are reviewed in this work, including techniques that util...
متن کاملPropagation of Blood Function Errors to the Estimates of Kinetic Parameters with Dynamic PET
Dynamic PET, in contrast to static PET, can identify temporal variations in the radiotracer concentration. Mathematical modeling of the tissue of interest in dynamic PET can be simplified using compartment models as a linear system where the time activity curve of a specific tissue is the convolution of the tracer concentration in the plasma and the impulse response of the tissue containing kin...
متن کامل